Etale Extensions of Λ-rings

نویسنده

  • CHARLES REZK
چکیده

Given a λ-ring A and a formally etale morphism f : A→ B of commutative rings, one may ask: What are the possible λ-ring strutures on B such that f is a map of λ-rings? We give the answer: Such a lifted λ-ring structure on B is determined uniquely by a compatible choice of lifts of the Adams operations ψ from A to B for all primes p which satisfy Frobenius congruences. In other words, to extend a λ-ring structure along a formally etale morphism, we need not be concerned about the “non-linear” part of the λ-ring structures in question.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extensions of strongly alpha-reversible rings

We introduce the notion ofstrongly $alpha$-reversible rings which is a strong version of$alpha$-reversible rings, and investigate its properties. We firstgive an example to show that strongly reversible rings need not bestrongly $alpha$-reversible. We next argue about the strong$alpha$-reversibility of some kinds of extensions. A number ofproperties of this version are established. It is shown ...

متن کامل

Ore extensions of skew $pi$-Armendariz rings

For a ring endomorphism $alpha$ and an $alpha$-derivation $delta$, we introduce a concept, so called skew $pi$-Armendariz ring, that is a generalization of both $pi$-Armendariz rings, and $(alpha,delta)$-compatible skew Armendariz rings. We first observe the basic properties of skew $pi$-Armendariz rings, and extend the class of skew $pi$-Armendariz rings through various ring extensions. We nex...

متن کامل

On derivations and biderivations of trivial extensions and triangular matrix rings

‎Triangular matrix rings are examples of trivial extensions‎. ‎In this article we determine the structure of derivations and biderivations of the trivial extensions‎, ‎and thereby we describe the derivations and biderivations of the upper triangular matrix rings‎. ‎Some related results are also obtained‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014